Abstract

TiC whisker reinforced ultra-fine TiC-based cermets were fabricated and their microstructures as well as mechanical properties were characterized and compared with microsized and ultra-fine cermets. The effects of high energy milling and subsequent annealing on the composition and microstructure of microsized TiC powders were studied. It was shown that the particle size distribution of TiC powders played a critical role in determining cermets׳ microstructure and properties. Inverse grain (White core with grey rim) only exists in ultra-fine cermet with a narrow size distribution of annealed TiC powders. Large discrepancy of larger TiC powders (microsized particles or whiskers) and ultra-fine particles in size resulted in a bimodal grain size feature. Additionally, mechanical property testing was conducted and was related to the microstructural features. The whisker reinforced cermets own much higher toughness of 12.43Mpam1/2 than the microsized and ultra-fine cermets, with a hardness (Hv30, 1620) between them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.