Abstract

Anterolateral capsule injury, often concomitant with anterior cruciate ligament (ACL) injuries, may result in high-grade rotatory instability. Lateral extraarticular tenodesis (LET) is sometimes added to ACL reconstruction to address this instability. However, LET is a non-anatomic procedure and concerns regarding increased tibiofemoral contact pressure and reduced internal rotation exist for some individuals which may be due to their tibiofemoral bony morphology. Therefore, the objective of this study was to analyze the effect of bony morphology on knee kinematic and contact pressure before and after anterolateral capsule injury and LET. A (1) 134-N anterior tibial load with 200-N axial compression and (2) a 7-Nm internal torque with a 200-N axial compression were applied to cadaveric knees (n = 8) using a 6 degree-of-freedom robotic testing system. Tibiofemoral bony morphology was captured with computed tomography scans and analyzed using 3D statistical shape modeling. Kinematics at each state were correlated with the results from the statistical shape model. Two femoral and three tibial modes of variation correlated with kinematic and contact pressure data before and after anterolateral capsule injury and LET. A decreased lateral tibial plateau elevation correlated with greater internal rotation and anterior tibial translation after anterolateral capsule deficiency and LET. Decreased notch width correlated with decreased contact area after anterolateral capsule deficiency and LET demonstrating it as a risk factor for ACL injury. The results of this study demonstrate that bony morphology if properly understood, could help improve the efficacy of LET procedures and that bony morphology has different effects after injury and repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call