Abstract

Background Tianxiangdan (TXD) is used in traditional Chinese medicine because of its therapeutic and preventive effects in the treatment of coronary heart disease. However, the underlying mechanism of TXD in coronary microvascular disease (CMD) remains unclear. Methods A rat model of CMD was developed to study the mechanism of TXD activity. Sodium laurate was injected into the left ventricle of Sprague–Dawley rats to induce CMD. The rats were divided into six groups: a sham-operated (sham) group, an untreated CMD group, a low-dose TXD group (0.81 g·kg−1·d−1), a mid-dose TXD (TXD-M) group (1.62 g·kg−1·d−1), a high-dose TXD (TXD-H) group (3.24 g·kg−1·d−1), and a nicorandil (NCR) group (1.35 mg·kg−1·d−1). The effect of TXD on rats with CMD was observed after four weeks, and the mechanism of TXD in lipopolysaccharide (LPS)-induced cardiac microvascular endothelial cells (CMECs) was explored through treatment with 50 μg/mL TXD. Results Compared with the rats in the untreated CMD group, rats in the TXD-M and TXD-H groups showed higher left ventricular ejection fraction values, improved pathological structures, decreased expressions of interleukin (IL)-1β, tumor necrosis factor-alpha (TNF-α), phosphorylated nuclear factor-κB inhibitor α (IκBα) and phosphorylated p65, and increased expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (P < 0.05). These effects were more pronounced in the TXD-H group than in the TXD-M group. In vitro experiments showed that TXD treatment increased the viability of LPS-induced CMECs and decreased the expression of IL-1β, TNF-α, phosphorylated IκBα, and phosphorylated p65 (P < 0.05). However, the effects of TXD on CMECs were markedly reversed upon treatment with ML385 (Nrf2 inhibitor). Conclusion The results showed that TXD exerts a protective effect on rats with CMD and related inflammatory injuries, and its anti-inflammatory mechanism is related to the activation of Nrf2 signalling.

Highlights

  • Coronary microvascular dysfunction (CMD), which is characterised by an abnormal structure and/or function of the coronary microvasculature [1], is a type of coronary heart disease (CHD)

  • The left ventricular ejection fraction (LVEF) values were measured using echocardiography. e LVEF value was significantly lower in the untreated coronary microvascular disease (CMD) group (75.68 ± 3.09%) than in the sham group (81.14 ± 2.43%) (P < 0.05), suggesting a decreased cardiac function in rats with CMD

  • The LVEF values were significantly higher in the TXD-M group (81.26 ± 3.44%) and the TXD-H group (81.72 ± 3.04%) than in the CMD group (P < 0.05), suggesting that treatment with TXD improved cardiac function in rats with CMD

Read more

Summary

Introduction

Coronary microvascular dysfunction (CMD), which is characterised by an abnormal structure and/or function of the coronary microvasculature (vessels with a diameter

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call