Abstract

BackgroundSingle nucleotide polymorphisms (SNPs) located within the human genome have been shown to have utility as markers of identity in the differentiation of DNA from individual contributors. Massively parallel DNA sequencing (MPS) technologies and human genome SNP databases allow for the design of suites of identity-linked target regions, amenable to sequencing in a multiplexed and massively parallel manner. Therefore, tools are needed for leveraging the genotypic information found within SNP databases for the discovery of genomic targets that can be evaluated on MPS platforms.ResultsThe SNP island target identification algorithm (TIA) was developed as a user-tunable system to leverage SNP information within databases. Using data within the 1000 Genomes Project SNP database, human genome regions were identified that contain globally ubiquitous identity-linked SNPs and that were responsive to targeted resequencing on MPS platforms. Algorithmic filters were used to exclude target regions that did not conform to user-tunable SNP island target characteristics. To validate the accuracy of TIA for discovering these identity-linked SNP islands within the human genome, SNP island target regions were amplified from 70 contributor genomic DNA samples using the polymerase chain reaction. Multiplexed amplicons were sequenced using the Illumina MiSeq platform, and the resulting sequences were analyzed for SNP variations. 166 putative identity-linked SNPs were targeted in the identified genomic regions. Of the 309 SNPs that provided discerning power across individual SNP profiles, 74 previously undefined SNPs were identified during evaluation of targets from individual genomes. Overall, DNA samples of 70 individuals were uniquely identified using a subset of the suite of identity-linked SNP islands.ConclusionsTIA offers a tunable genome search tool for the discovery of targeted genomic regions that are scalable in the population frequency and numbers of SNPs contained within the SNP island regions. It also allows the definition of sequence length and sequence variability of the target region as well as the less variable flanking regions for tailoring to MPS platforms. As shown in this study, TIA can be used to discover identity-linked SNP islands within the human genome, useful for differentiating individuals by targeted resequencing on MPS technologies.

Highlights

  • Single nucleotide polymorphisms (SNPs) located within the human genome have been shown to have utility as markers of identity in the differentiation of Deoxyribonucleic acid (DNA) from individual contributors

  • We identified 54 SNP islands that we define as haplotypes of multiple identity-linked SNPs located within the same discrete genomic region

  • Algorithmic identification of identity-linked SNP islands Using the parameters for identity-linked SNP island discovery, the computational algorithms developed within this study located 54 qualifying SNP islands for use with the Illumina Massively parallel DNA sequencing (MPS) platform chemistry

Read more

Summary

Introduction

Single nucleotide polymorphisms (SNPs) located within the human genome have been shown to have utility as markers of identity in the differentiation of DNA from individual contributors. In the application of massively parallel sequencing (MPS) technologies in forensic sciences, reports have described the Illumina ForenSeq system [8,9,10,11] and the Ion Torrent AmpliSeq HID system [12] for use in human identification and genetic profiling. Each of these use MPS technologies for rapid targeted resequencing analysis of informative SNPs

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.