Abstract

This research is focused in infrared vacuum brazing Ti-6Al-4V (Ti-64) and other alloys. For the brazed Ti-64 and Ti50Ni50 joint using the Ag-Cu-1.75Ti filler, CuNiTi and Ti3Cu4 are formed adjacent to the Ti50Ni50 substrate, and AlCu2Ti is observed with increasing the brazing time and/or temperature. Ti2Cu, TiCu, Ti3Cu4 and TiCu4 are found nearby the Ti-64 substrate. The microstructural evolution of the joint using the Ag-Cu- 4.5Ti filler is similar to that of Ag-Cu-1.75Ti filler except for thicker Ti-Cu intermetallics. For the brazed Ti-64 and 17-4PH stainless steel (17-4 PH SS) with Cr/Ni coatings joint using the BAg-8 filler, the microstructure of Ti-64 side is similar to the aforementioned result. For the 17-4PH SS side, the Ni film is disappeared and dissolved into the braze resulting in the CuNiTi phase. It is found that introducing a thin layer of Ni film greatly improves the wettibility of the molten braze on the 17-4PH SS, so shear strengths of joints are more stable. For the use of Ag-Cu-1.75Ti filler to braze 17-4PH SS coated with Cr film, TiCr2 is formed next to the 17-4PH SS, and it impairs shear strength of the brazed joint. For the use of 60Ti-15Cu-25Ni filler to braze Ti50Al50 alloy, two layers are formed: one layer composed of α2-Ti3Al and γ-TiAl mixtures and the other having a continuous α2-Ti3Al phase. The residual filler in the brazed zone is composed of Ti2Cu and Ti2Ni. For 70Ti-15Cu-15Ni filler, the microstructural evolution of the joint is very similar to that of 60Ti-15Cu- 25Ni filler except for the decreased residual filler zone. The phase evolution of the joint brazed by 40Ti-20Zr-20Cu- 20Ni filler is changed because of introducing Zr, and there are at least three different phases formed in the residual filler zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call