Abstract

We present several possible microstructure development scenarios in Ti3SiC2-Cu composites during mechanical milling and Spark Plasma Sintering (SPS). We have studied the effect of in situ consolidation during milling of Ti3SiC2 and Cu powders and melting of the Cu matrix during the SPS on the hardness and electrical conductivity of the sintered materials. Under low-energy milling, (3–5) vol.%Ti3SiC2-Cu composite particles of platelet morphology formed, which could be easily SPS-ed to 92–95% relative density. Under high-energy milling, millimeter-scale (3–5) vol.%Ti3SiC2-Cu granules formed as a result of in situ consolidation and presented a challenge to be sintered into a bulk fully dense sample; the corresponding SPS-ed compacts demonstrated a finer-grained Cu matrix and more significant levels of hardening compared to composites of the same composition processed by low-energy milling. The 3 vol.% Ti3SiC2-Cu in situ consolidated and Spark Plasma Sintered granules showed an extremely high hardness of 227 HV. High electrical conductivity of the Ti3SiC2-Cu composites sintered from the granules was an indication of efficient sintering of the granules to each other. Partial melting of the Cu matrix, if induced during the SPS, compromised the phase stability and uniformity of the microstructure of the Ti3SiC2-Cu composites and thus it is not to be suggested as a pathway to enhanced densification in this system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.