Abstract

Zinc-ion batteries (ZIBs) are promising candidates for safe energy storage applications. However, undesirable parasitic reactions such as dendrite growth, gas evaluation, anode corrosion, and structural damage to the cathode under an acidic microenvironment severely affected cell performance. To resolve these issues, an MXene entrapped in an ionic liquid semi-solid gel polymer electrolyte (GPE) composite was explored. The molecular-level mixing of poly(vinylidene fluoride-co-hexafluoropropylene) (PVHF), zinc trifluoromethanesulfonate (Zn(OTF)2), 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) ionic liquid, and Ti3C2Tx MXene provided a controlled Zn2+ shuttle toward the anode/cathode. Ti3C2Tx/EMIBF4/Zn(OTF)2/PVHF exhibited a breaking strength of 0.36 MPa with an associated extension of 23%. The Zn//Ti3C2Tx/EMIBF4/Zn(OTF)2/PVHF//Zn symmetric cell with continuous zinc plating/stripping exhibited excellent Zn2+ ion mobility toward the anode and cathode without undesired reactions. This was confirmed by post-mortem analysis after a symmetric cell compatibility test. The as-prepared GPE with a Na3V2(PO4)3 (NVP) cathode exhibited a high chemical diffusion coefficient of 1.14 × 10-7. It also showed an outstanding reversible capacity of 89 mAh g-1 at C/10 with an average discharge plateau voltage of 1.45 V, cycle durability, and controlled self-discharge. These results suggested that the Zn2+ ions in the Ti3C2Tx/EMIBF4/Zn(OTF)2/PVHF composite are reversibly labile in the anode and cathode directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.