Abstract
The development of efficient photocatalysts for the production of hydrogen peroxide (H2O2) is a promising strategy to realize solar-to-chemical energy conversion. Graphitic carbon nitride (g-C3N4) presents giant potential for photocatalytic H2O2 production, but the sluggish charge separation depresses its photocatalytic performance. Herein, an interfacial Schottky junction composed of Ti3C2 nanosheets and porous g-C3N4 nanosheets (TC/pCN) is constructed by a facile electrostatic self-assembly route to significantly boost the spatial charge separation to promote the activation of molecular oxygen for H2O2 production. As the optimal sample, TC/pCN-2 possesses the highest H2O2 production rate (2.20 μmol L−1 min−1) under visible light irradiation (λ > 420 nm), which is about 2.1 times than that of the porous g-C3N4. The results of superoxide radical detection and rotating disk electrode measurement suggest that the two-step single-electron reduction of oxygen is the predominant reaction step during this photocatalytic H2O2 production process. The enhanced photocatalytic performance is ascribed to the formation of Schottky junction and subsequent built-in electric field at their interface, which accelerate the spatial charge separation and restrain the charge recombination. This work provides an in-depth understanding of the mechanism of photocatalytic H2O2 production, and gives ideas for the design of highly active materials for photocatalytic H2O2 production.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.