Abstract

Ti3+ self-doped blue TiO2(B) single-crystalline nanorods (b-TR) are fabricated via a simple sol-gelation method, cooperated with hydro-thermal treatment and subsequent in situ treatment method, and afterward annealed at 350 °C in Ar. The structures are characterized by X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (UV-vis), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The prepared b-TR with narrow band gap possesses single-crystalline TiO2(B) phase, Ti3+ self-doping, and one-dimensional (1D) rodlike nanostructure. In addition, the improved photocatalytic performance is studied by decomposition of Rhodamine B (RhB) and hydrogen evolution. The degradation rate of RhB by Ti3+ self-doped blue TiO2(B) single-crystalline nanorods is ∼6.9- and 2.1-times higher compared with the rates of titanium dioxide nanoparticles and pristine TiO2(B) nanorods under visible light illumination, respectively. The hydrogen evolution rate of b-TR is 26.6 times higher compared with that of titanium dioxide nanoparticles under AM 1.5 irradiation. The enhanced photocatalytic performances arise from the synergetic action of the special TiO2(B) phase, Ti3+ self-doping, and the 1D rod-shaped single-crystalline nanostructure, favoring the visible light utilization and the separation and transportation of photogenerated charge carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call