Abstract

A novel method of synthesizing Ti3+-doped TiO2 was proposed. Ti3+-doped TiO2 hollow spheres were prepared with different thickness of carbon shell by using atmospheric pressure plasma jet generated by dual-frequency power sources. The as-synthesized Ti3+-doped TiO2 hollow microspheres were characterized by X-ray diffraction (XRD) pattern, scanning electron microscope (SEM) images, high-resolution transmission electron microscopy (HRTEM) images, Raman spectra, X-ray photoelectron spectroscopy (XPS), and UV–vis spectra. These results indicated that these samples had mixed phases of anatase and rutile and the structure of hollow sphere varied with different thickness of carbon shell. The Ti-O-C chemical bond was the connection between the TiO2 hollow sphere and carbon layer. Amount of Ti3+ ions were found, which were accompanied with the formation of oxygen vacancies. Meantime, the as-synthesized catalysts also display strong absorption in the visible light region and have a narrow band energy gap. Optical emission spectroscopy (OES) was used to observe different excited species in the discharge area. These results showed that the oxygen content had a significant impact on the number of oxygen vacancies. Finally, the photocatalytic activities of as-prepared samples were evaluated by decomposition of rhodamine B aqueous solution, which showed better photocatalytic activity under UV–vis light irradiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call