Abstract

Based on the Wade-Mingos n+1 rule for the closo-boranes (B(n)H(n) (2-)), a family of Ti-substituted closo-boranes has been designed computationally. Due to the isolobal relation of Ti to a BH(2-) group, these Ti-substituted boranes have n+1 pairs of skeletal electrons to fulfill the bonding requirement for such stable cages. The reported representatives, B(4)H(4)Ti(2)H(2) in particular, not only have stable electronic structures but also superior capability to adsorb hydrogen. The optimal binding energies and high gravimetric densities of hydrogen storage indicate their potential to store hydrogen for practical applications. Simultaneously achieving electronic stability and optimal hydrogen uptake may provide a way of overcoming the issue of aggregation in designing transition-metal-decorated hydrogen storage materials. This study invites experimental realization of novel boranes and provides new ideas for searching for hydrogen storage materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.