Abstract

Metal-oxide semiconductors are widely used as functional materials for gas sensing because of their chemoresistive effect when interacting with ambient gases. For this work, nanosized TixSn1−xO2 have been synthesized at increasing Ti molar ratio (x=0, 0.1, 0.2, 0.25, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 1) and extensively investigated through a wide variety of characterizations. It turned out that the merging process of the two single oxides formed new compounds with improved gas responses compared to pure TiO2 and also to pure SnO2. Moreover, all investigated physico-chemical characteristics resulted tuneable through the titanium content in the solid solution. Each characterization carried out onto TixSn1−xO2 solid solutions made it possible to identify two classes of materials with SnO2-like or TiO2-like behaviours, the best CO response being on the intersection of the two species of materials. Moreover, a very interesting analysis on the generally accepted electrical transport model through polycrystalline semiconductors has been carried out. Indeed, the comparison with experimental evidences has highlighted a conduction mechanism not previously considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.