Abstract

Regarding to the influence of chloride and fluoride ions on the corrosion resistance, the electrochemical behavior of Ti alloys has been deeply studied. In this work, the main goal was to investigate the electrochemical behavior of cp-Ti and Ti-Mo alloys containing 6, 10 and 15 wt% of Mo concentrations. All the samples were immersed in different solutions, such as 0.15 mol L-1 Na2SO4, 0.15 mol L-1 Ringer, 0.15 mol L-1 Ringer plus 0.036 mol L-1 NaF and 0.036 mol L-1 NaF. Simulating the commercial fluorinated gels, the NaF solutions naturally-aerated were prepared with 1450 ppm of fluoride ions. The electrochemical techniques applied in this work were the open-circuit potential, cyclic voltammetry, besides the technique for chemical identification, which was X-ray photoelectron spectroscopy. The formation and growth of TiO2 and MoO2 were identified, without pitting corrosion. The electrochemical stability and the corrosion resistance of the Ti-Mo alloys decreased in the solutions containing chloride and fluoride ions, with an appreciative decrease especially in the fluorinated medium. The Ti-Mo alloy with higher Mo content concentration was the material with higher corrosion resistance. Therefore, it is a promising candidate as a biomaterial, once the osseointegration needs a satisfactory corrosion resistance for being achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.