Abstract
Both external and implantable devices are becoming more sophisticated and are requiring more on-chip memory to store data from biological sensors. To deal with this complexity, chip designs are moving toward smaller process geometries, which provide added functionality, reduced size, or both, often along with a reduction in dynamic power. However, leakage power begins to increase significantly at the 130nm node if steps are not taken to mitigate the increased transistor leakage. Lower operating voltages and careful transistor design can offset some of this increase. These very changes, however, make it difficult to design a dense, stable low-power SRAM. Nonvolatile memories like FRAM (F-RAM) avoid these difficulties and save power by simply turning off the memory when not in use. This is particularly valuable since many medical devices have very low duty cycle. FRAM provides the added benefit of providing SRAM-like active power, unlike competing nonvolatile technologies. To meet the challenging power requirements of medical devices, a new ultra-low-power 130nm process has been developed. The new process includes a very-high-density, SER-resistant, nonvolatile FRAM and an ultra-low-leakage transistor, coupled with a library that is optimized for low-power operation. This paper compares the power, area and performance of competing process technologies for a typical implantable medical design and highlights the advantages that FRAM provides in low static power through a transparent power-down capability and in low SRAM-like active power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.