Abstract
The metal centres of nano-zeolitic imidazolate framework-8(Zinc) and 67(Cobalt) [nZIF-8(Zn) and nZIF-67(Co)] were partially exchanged with titanium (Ti) centres to form bimetallic nZIF-8(Zn/Ti) (52% Ti4+) and nZIF-67(Co/Ti) (38% Ti4+) respectively, for enhanced photocatalytic performance. A morphological and structural analysis by scanning electron microscopy, energy dispersive spectroscopy (EDS)-mapping and powder X-ray diffraction showed that the particle size, distribution, and the structural integrity of the Sodalite frameworks of the parent ZIFs were retained during the exchange process to form the new bimetallic Ti-ZIFs. Fourier transform infrared spectroscopy confirmed that no additional chemical bonds were formed during the process. X-ray photoelectron spectroscopy binding energies confirmed the preservation of the Zn(II), Co(II) and Ti(IV) oxidation states, as well as the Ti-content, consistent with inductively coupled plasma-optical emission spectrometry and EDS measurements. The Ti-exchanged ZIFs showed higher activity during the photocatalytic oxidation of hydroquinone in comparison with their parent ZIFs. Their kinetic rates were nearly five times faster than those of the parent ZIFs, with the first-order rate constants k = 0.189 min−1 for nZIF-8(Zn/Ti) and k = 0.139 min−1 for nZIF-67(Co/Ti). These catalysts are efficient, stable, and reusable for three photocatalytic cycles without a significant loss of catalytic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Inorganic and Organometallic Polymers and Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.