Abstract

Difference in lattice parameters and physical properties of core-rim structure leads to mismatch at the core-rim interfaces. In this respect, VC was adopted to shrink the lattice of rims and intended to reduce the lattice misfit. Small amount of VC (0.8 wt%) effectively decreased the grain size from 0.77 μm to 0.57 μm, with an increased lattice parameter of the core-rim phase. Higher VC content accelerated the dissolution and precipitation process, resulting in the formation of thicker rims and smaller lattice parameters of core-rim structure. The same lattice parameters of core-rim phases were achieved with 4.8 wt% of VC addition. A distortion zone with a thickness of 3–5 atomic layers was confirmed, which located at the boundary of binder and gray rim. VC induced the formation of spherical rimless grains, which were uniformly dispersed in the binder and usually attached to the coarse core-rim grains. Black ultrafine rimless grains exhibited larger lattice parameters than Ti(C,N) cores due to the increased C/N ratios. Ti(C,N)-based cermets with uniformly dispersed rimless grains were achieved, which showed effectively improved the bending strength of cermets, with in-situ formed dimples inside the binders during the fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call