Abstract

Terahertz pulse generation by ultraintense two-color laser fields ionizing gases with near- to far-infrared carrier wavelength is studied from particle-in-cell simulations. For a long pump wavelength (10.6 μm) promoting a large ratio of electron density over critical, photoionization is shown to catastrophically enhance the plasma wakefield, causing a net downshift in the optical spectrum and exciting THz fields with tens of GV/m amplitude in the laser direction. This emission is accompanied by coherent transition radiation (CTR) of comparable amplitude due to wakefield-driven electron acceleration. We analytically evaluate the fraction of CTR energy up to 30% of the total radiated emission including the particle self-field and numerically calibrate the efficiency of the matched blowout regime for electron densities varied over three orders of magnitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call