Abstract

Detection of THz radiation by a high electron mobility (HEMT) GaAs / GaAlAs transistor was investigated at 4 K as a function of the magnetic field B. The detection signal (a source - drain photovoltage appearing as a response to THz radiation) was found to be periodic in B-1, i.e., it showed Shubnikov - de Haas oscillations. A Fourier transform of the signal showed a large amplitude component independent of the gate voltage, and a small amplitude component dependent on it. This shows that a HEMT response to the radiation cannot be described either by a plasma instability in gated ("shallow water") or in ungated ("deep water") parts of the channel, but rather by a response of the channel as a whole. This is in a good correspondence with recent experimental evidence of antenna effects in detection of radiation by HEMTs and advanced theoretical models of instability of coupled gated - ungated plasma in HEMTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.