Abstract

The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease.

Highlights

  • There is an increasing appreciation for the role of the biological clock and its molecular components in maintaining tissue homeostasis [1,2,3,4,5]

  • Quantitative-RT-PCR of hair follicle (HF) treated with T4 for 24 hours demonstrated that there was a significant reduction in gene mRNA steady-state levels for the core clock genes [10,46], i.e. CLOCK, BMAL1 and PER1 (p< 0.001) (Fig 1A)

  • We present the first evidence that T4 is a modulator of peripheral clock activity in a model humanorgan in the absence of central clock inputs

Read more

Summary

Introduction

There is an increasing appreciation for the role of the biological clock and its molecular components in maintaining tissue homeostasis [1,2,3,4,5]. It is understood that most peripheral tissues exhibit functional, oscillating molecular clock activity which is synchronised by a central master regulator, the suprachiasmatic nucleus (SCN) of the hypothalamus [6,7,8]. PLOS ONE | DOI:10.1371/journal.pone.0121878 March 30, 2015

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.