Abstract

Actin depolymerization specifically blocks the rapid thyroid hormone-dependent inactivation of type II iodothyronine 5'-deiodinase. Thyroid hormone appears to regulate enzyme inactivation by modulating actin-mediated internalization of this plasma membrane-bound protein. In this study, we examined the interrelationships between thyroxine-dependent enzyme inactivation and the organization of the actin cytoskeleton in cultured astrocytes. Steady-state enzyme levels were inversely related to actin content in dibutyryl cAMP-stimulated astrocytes, and increases in filamentous actin resulted in progressively shorter enzyme half-lives without affecting enzyme synthesis. In the absence of thyroxine, filamentous actin decreased by approximately 40% and soluble actin correspondingly increased; thyroxine normalized filamentous actin levels without changing total cell actin. Thyroxine treatment for only 10 min resulted in an approximately 50% loss of enzyme and increased filamentous actin 2-fold. Neither cycloheximide nor actinomycin D affected the thyroxine-induced actin polymerization. Astrocytes grown without thyroxine also showed a disorganized actin cytoskeleton, and 10 nM thyroxine or 10 nM reverse triiodothyronine normalized the actin cytoskeleton appearance within 20 min; 10 nM 3,3',5-triiodothyronine had no effect. These data show that thyroxine modulates the organization of the actin cytoskeleton in astrocytes and suggest that regulation of actin polymerization may contribute to thyroid hormone's influence on arborization, axonal transport, and cell-cell contact in the developing brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.