Abstract

We investigated whether thyroxine influences hatchling growth rate of the western fence lizard (Sceloporus occidentalis) throught its effects on thermoregulatory behaviors. We reared control and thyroxine-injected hatchlings from three populations of S. occidentalis that differ in growth rate in a thermal gradient. We also measured the daily changes in body temperature and activity level (proportion of time spent out of retreat sites) of control and thyroxine-injected lizards. Previous studies have shown that within and among population differences in growth rate of the western fence lizard are correlated with the maintenance of high activity levels (proportion of time spent outside of retreat sites) and high body temperatures throughout the day. Growth rate was not influenced by injections of thyroxine. However, injections of thyroxine did elevate average daily body temperature and daily activity. Although administration of thyroxine uniformly increased the probability of activity throughout the day, it did not appear to alter the daily changes in activity. Previous studies have shown that the slower-growing hatchlings from northern populations exhibit a decline in activity during the later part of the thermal cycle, whereas the faster growing southern hatchlings maintain the same level of high activity throughout the thermal cycle. The decline in activity of northern populations was not prevented by thyroxine injection used in our current study. Northern lizards receiving exogenous thyroxine were still less active later in the day compared to early in the day, even though activity level throughout the day was elevated. Thus, the effects of thyroxine on temperature regulation observed in our study (general increase in activity level) appear to be unrelated to those aspects of temperature regulation (e.g., daily changes in behavioral thermoregulation) that are correlated with among population differences in growth rate. We also raised hatchlings in a cycling thermal regime (forced thermal cycle of 34°C:15°C, 12L:12D) where behavioral thermoregulation is not possible. The growth rate of lizards forced to cycle between 34°C:15°C on a daily basis was significantly lower than those lizards allowed to behaviorally thermoregulate, further underscoring the importance of the circadian pattern of thermoregulation for growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call