Abstract
Hippocampal thyrotropin-releasing hormone (TRH) release was examined after seizures were induced by electroconvulsive shock (ECS). Rat hippocampal slices taken 12, 24, or 48 h after 3 days of alternate-day ECS treatment or sham-ECS treatment were stimulated with potassium with or without calcium in a superfusion system containing in-line charcoal adsorbent to concentrate TRH. Released TRH and tissue TRH were measured by radioimmunoassay. The TRH content of hippocampal slices was increased fivefold over sham-ECS levels 12, 24, and 48 h after ECS, but this was not associated with an increase in basal TRH release. Potassium-stimulated TRH release was significantly elevated over basal release 12, 24, and 48 h after ECS. Potassium-stimulated calcium-dependent TRH release increased linearly after ECS, reaching its highest level 48 h after seizure. Thus, although enhanced calcium-dependent TRH release was associated with elevated tissue levels, this relationship was not proportional in that tissue TRH was elevated to the same extent at all times after ECS, whereas potassium-evoked calcium-dependent TRH release increased gradually over time after seizure. These results suggest that postictal elevations in TRH are associated with an enhanced capacity for release that develops as a result of a time-dependent shift of TRH from a storage compartment ot a readily releasable pool. The observed elevation in stimulated TRH release may be relevant to seizure-induced modulation of TRH receptors in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Neurochemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.