Abstract

Platelet-activating factor (PAF) and leukotrienes, newly described classes of vasoactive lipids, may play a role in anaphylaxis. It has recently been suggested that the vasoconstrictor effects of PAF in isolated rat lung are related to release of leukotrienes C4 and D4. Thyrotropin-releasing hormone (TRH), a tripeptide, has potent antihypotensive activity in experimental shock, including that resulting from either leukotriene D4 administration or antigen-induced anaphylaxis. We utilized an unanesthetized guinea pig model to study the relationships among PAF, leukotrienes, and TRH and their potential interactions on the cardiovascular system. PAF (1 nmol/600 g body weight i.v.) produced profound hypotension which was completely blocked by TRH (2 mg/kg i.v.). Nafazatrom or FPL 55712, a presumed receptor antagonist of leukotrienes, was ineffective, whereas U-60257, a leukotriene synthesis inhibitor, displayed incomplete blockade. Moreover, leukotriene-like immunoreactivity in plasma did not increase following PAF administration. Thus, hypotension produced by PAF does not appear to result secondarily from release of cysteinyl leukotrienes. Moreover, the ability of TRH to block the hypotensive effects of PAF may partially account for its beneficial effects in experimental anaphylaxis and provides further rationale for the therapeutic evaluation of this peptide in anaphylactic shock.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call