Abstract

Thyroid transcription factor 1 (TTF-1) was identified for its critical role in thyroid-specific gene expression; its level in the thyroid is regulated by thyrotropin-increased cyclic AMP levels. TTF-1 was subsequently found in lung tissue, where it regulates surfactant expression, and in certain neural tissues, where its function is unknown. Ligands or signals regulating TTF-1 levels in lung or neural tissue are unknown. We recently identified TTF-1 in rat parafollicular C cells and parathyroid cells. In this report, we show that TTF-1 is present in the parafollicular C cells of multiple species and that it interacts with specific elements on the 5'-flanking regions of the extracellular Ca2+-sensing receptor (CaSR), calmodulin, and calcitonin genes in C cells. When intracellular Ca2+ levels are increased or decreased in C cells, by the calcium ionophore A23187, by physiologic concentrations of the P2 purinergic receptor ligand ATP, or by changes in extracellular Ca2+ levels, the promoter activity, RNA levels, and binding of TTF-1 to these genes are, respectively, decreased or increased. The changes in TTF-1 inversely alter CaSR gene and calcitonin gene expression. We show, therefore, that TTF-1 is a Ca2+-modulated transcription factor that coordinately regulates the activity of genes critical for Ca2+ homeostasis by parafollicular C cells. We hypothesize that TTF-1 similarly coordinates Ca2+-dependent gene expression in all cells in which TTF-1 and the CaSR are expressed, i. e., parathyroid cells, neural cells in the anterior pituitary or hippocampus, and keratinocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.