Abstract

Post-treatment hypothyroidism is common in Graves' disease, and clinical guidelines recommend monitoring for it; however, thyroid stimulating hormone (TSH) can remain suppressed in these patients following treatment. The objectives of this study were to explore the proposed pathophysiology behind the phenomenon of post-therapy TSH suppression and to systematically review existing clinical data on post-therapy TSH suppression in patients with Graves' disease. A systematic literature search was performed using EMBASE and PubMed databases, with several combinations of MeSH terms. Bibliography mining was also done on relevant articles to be as inclusive as possible. A total of 18 articles described possible mechanisms for post-therapy TSH suppression. Several of the studies demonstrate evidence of thyrotroph atrophy and hypothesize that this contributes to the ongoing suppression. TSH receptors have been identified in folliculo-stellate cells of the pituitary as well as astroglial cells of the hypothalamus, mediating paracrine feedback. A few studies have demonstrated inverse correlation between autoantibody titres and TSH levels, suggestive of their role in mediating ongoing TSH suppression in patients with Graves' disease. In addition, five studies were identified that provided clinical data on the duration of TSH suppression. Combined data show that 45.5% of patients recover TSH by 3 months after treatment, increasing to 69.3% by 6 months, and plateauing to 73.8% by 12 months (p>0.0001). Sub-analysis also shows that for patients who are TBII negative, 80.7% recover their TSH by 6 months compared with only 58.7% in those who are TBII positive (p= 0.003). Clinical data suggests that TSH recovery is most likely to occur within the first 6 months after treatment, with recovery plateauing at approximately 70% of patients, suggesting that reliance on this assay for monitoring can be very misleading. Furthermore, TBII positivity is associated with lower likelihood of TSH recovery. Pathophysiology behind suppressed TSH involves not only anatomical but also autoimmune mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call