Abstract

Previous studies have found microRNA-1 (miR-1) and hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) may be involved in the pathogenesis of thyroid hormone (TH) induced cardiac hypertrophy. However, little is known about the role of miR-1 and HCN2 in thyroid stimulation hormone (TSH)-induced cardiac dysfunction. In order to investigate the molecular mechanisms of TSH induced cardiac dysfunction and the role of miR-1/HCN2 in that process, we evaluated the expression of miR-1a/HCN2 in the ventricular myocardium of hypothyroid mice and in TSH-stimulated H9c2 cardiomyocytes. Our data revealed that hypothyroidism mice had smaller hearts, ventricular muscle atrophy, and cardiac contractile dysfunction compared with euthyroid controls. The upregulation of miR-1a and downregulation of HCN2 were found in ventricular myocardium of hypothyroid mice and TSH-stimulated H9c2 cardiomyocytes, indicating that miR-1a and HCN2 may be involved in TSH-induced cardiac dysfunction. We also found that the regulation of miR-1a and HCN2 expression and HCN2 channel activity by TSH requires TSHR, while the regulation of HCN2 expression and HCN2 channel function by TSH requires miR-1a. Thus, our data revealed the potential mechanism of TSH-induced cardiac dysfunction and might shed new light on the pathological role of miR-1a/HCN2 in hypothyroid heart disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call