Abstract

The diagnosis of canine hypothyroidism and its differentiation from euthyroid sick syndrome still is a major diagnostic challenge. In this study, ultrasonography was shown to be an effective tool for the investigation of thyroid gland diseases. Healthy control dogs (n = 87), dogs with euthyroid sick syndrome (n = 26), thyroglobulin autoantibody‐positive (TgAA‐positive, n = 30) hypothyroid dogs, and TgAA‐negative (n = 23) hypothyroid dogs were examined by thyroid ultrasonography. Maximal cross sectional area (MCSA), thyroid volume, and echogenicity were measured. Statistical analysis identified highly significant (P < .001) differences between euthyroid and hypothyroid dogs both in thyroid volume and in MCSA, whereas no significant differences in thyroid size were detected between healthy euthyroid dogs and dogs with euthyroid sick syndrome. In euthyroid and euthyroid sick dogs, parenchymal echotexture was homogeneous and hyperechoic, whereas relative thyroid echogenicity of both TgAA‐positive and TgAA‐negative hypothyroid dogs was significantly lower (P < .001). When using arbitrarily chosen cutoff values for relative thyroid volume, MCSA, and echogenicity, thyroid volume especially was found to have highly specific predictive value for canine hypothyroidism. In summary, the data reveal that thyroid sonography is an effective ancillary diagnostic tool to differentiate between canine hypothyroidism and euthyroid sick syndrome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.