Abstract

The generation of artificial human thyroid tissues in suspension (low-shear environment, present in simulated microgravity [MG] and generated by a rotary cell culture system [RCCS]), was enhanced by increasing medium kinematic viscosity with a (3% v/v) suspension of extracellular matrix (basement membrane extract [BME]) in serum-free medium to generate artificial human thyroid organoids. Recombinant human keratinocyte growth factor (KGF, 7 ng/mL) facilitated human thyrocyte aggregation and three-dimensional (3-D) differentiation. There was an MG-associated decrease in extractable DNA that was reversed after addition of keratinocyte growth factor (KGF). In simulated MG, the increase in extractable DNA after KGF addition was up to 170% over non-KGF control cultures. In contrast, monolayer cultures in unit gravity showed a maximum DNA increase of 39% after KGF addition. Morphologically, differentiated thyroid neofollicles displayed polarization and were located in close proximity after 2 weeks of culture. Immunogold labeling with antibody to human thyroglobulin (Tg) revealed staining of follicular lumina and secretory vesicles, and a time-dependent increase in human Tg was detected in the culture media. Culture under simulated MG thus allowed direct visualization of KGF-facilitated thyrocyte/extracellular matrix interaction. Such artificial human thyroid organoids-generated in MG and in the presence of KGF-structurally resembled natural thyroid tissue. The above findings may have implications for autoimmune thyroid disease where KGF (if, for example, secreted locally by intraepithelial gammadelta T cells among other cells) may contribute to thyroid cell growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.