Abstract

The beta-amyloid protein (Abeta), the major component of the senile plaques found in Alzheimer brains, derives from a larger beta-amyloid precursor protein (APP). Alternative splicing of the APP gene yields three major APP messenger RNAs (mRNAs), which, in turn, give rise to the APP770, APP751, and APP695 protein isoforms. In this study we examined the effects of thyroid hormone on APP expression in N2a-beta neuroblastoma cells. T3 caused a significant increase in the APP770 mRNA band, in detriment of the APP695 mRNA, which was proportionately reduced. In agreement with these results, T3 markedly altered the relative ratio of intracellular APP isoforms, increasing the amount of APP770 and causing an equivalent reduction of the immature APP695 isoform. In accordance with these results, the soluble APP695-derived form was specifically reduced in the culture medium obtained from T3-treated cells. In contrast, the increase in intracellular APP770 was not followed by an enhanced release of soluble derivatives of this isoform. These results suggest that T3 regulates not only APP gene splicing, but also the processing and secretion of the APP peptides. According to our results, thyroid hormone might play a role in the development of Alzheimer's disease by modulating the intracellular and extracellular contents of APP isoforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.