Abstract

We have previously shown that treatment with the thyroid hormone T(3) increases the voltage-gated Na(+)current density (Nav-D) in hippocampal neurons from postnatal rats, leading to accelerated action potential upstrokes and increased firing frequencies. Here we show that the Na(+) current regulation depends on the presence of glial cells, which secrete a heat-instable soluble factor upon stimulation with T(3). The effect of conditioned medium from T(3)-treated glial cells was mimicked by basic fibroblast growth factor (bFGF), known to be released from cerebellar glial cells after T(3) treatment. Neutralization assays of astrocyte-conditioned media with anti-bFGF antibody inhibited the regulation of the Nav-D by T(3). This suggests that the up-regulation of the neuronal sodium current density by T(3) is not a direct effect but involves bFGF release and satellite cells. Thus glial cells can modulate neuronal excitability via secretion of paracrinely acting factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call