Abstract

Thyroid hormone (T3) suppresses cerebral gene expression of the β-amyloid precursor protein (APP), an integral membrane protein that plays a key role in the onset and progression of Alzheimer's disease. However, the mechanisms by which T3 signaling pathways inhibit APP gene transcription in the brain remain unclear. By carrying out chromatin immunoprecipitation with neuroblastoma cells and primary rat brain tissue, we show for the first time that thyroid hormone receptors (TRs) directly bind at the APP gene in vivo at a promoter region containing a negative T3-response element. We further show that T3 treatment decreases both histone H3 acetylation and histone H3 lysine 4 methylation at the APP promoter and that chemical inhibitors of histone deacetylases and histone lysine demethylase abrogate T3-dependent APP silencing. Our findings thus suggest that TRs actively facilitate T3-dependent silencing of APP gene expression via the recruitment of distinct histone modifying enzymes associated with transcriptional repression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.