Abstract

Thyroid hormone (TH) signalling is a key modulator of fundamental biological processes that has been evolutionarily conserved in both vertebrate and invertebrate species. TH may have initially emerged as a nutrient signal to convey environmental information to organisms to induce morpho-anatomical changes that could maximise the exploitation of environmental resources, and eventually integrated into the machinery of gene regulation and energy production to become a key regulator of development and metabolism. As such, TH signalling is particularly sensitive to environmental stimuli, and its alterations result in fundamental changes in homeostasis and physiology. Stressful stimuli of various origins lead to changes in the TH-TH receptor (TR) axis in different adult mammalian organs that are associated with phenotypical changes in terminally differentiated cells, the reactivation of foetal development programmes, structural remodelling and pathological growth. Here, we discuss the evolution of TH signalling, review evolutionarily conserved functions of THs in essential biological processes, such as metamorphosis and perinatal development, and analyse the role of TH signalling in the phenotypical and morphological changes that occur after injury, repair and regeneration in adult mammalian organs. Finally, we examine the potential of TH treatment as a therapeutic strategy for improving organ structure and functions following injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.