Abstract
Thyroid hormone receptors (TRs) are transcription factors that bind to thyroid hormone response elements (TREs) in the regulatory regions of target genes. TRs are thought to activate transcription primarily as heterodimers with retinoid X receptors (RXRs), with RXR binding upstream to the two directly repeated half-sites in a typical TRE. However, given that TRs and RXRs prefer to bind to different DNA sequences (T(A/G)AGGTCA and GGGGTCA), we postulate that only certain TREs require RXR-TR heterodimerization, depending on the TRE sequence. We have tested this hypothesis by comparing in Saccharomyces cerevisiae the functional activity of TR +/- RXR on 10 naturally occurring mammalian TREs. S. cerevisiae was used as a model system because yeast lack endogenous nuclear receptors and thus can be manipulated to express TRs and/or RXRs. We first studied ligand-independent reporter gene activation, which reflects the activity of the activator function 1 (AF-1) domain. The 10 TREs formed a continuous spectrum from being fully dependent on RXR for TR AF-1 activity to being essentially independent of RXR. Relative independence of RXR generally was seen when the TRE upstream half-site has a TA or TG 5' to the core hexamer. Gel mobility shift assays revealed that functional independence of RXR correlates with the strong binding of TR alone, whereas more RXR dependence correlates with higher binding of RXR-TR heterodimers. Restoration of ligand-dependent (AF-2 domain) reporter gene activation was achieved by expression of the coactivator TIF2. This ligand-induced stimulation was stronger in the presence of TR alone than with RXR plus TR, suggesting a preference for TIF2 activation of TR homodimers. Overall the data support the notion that the TRE sequence plays an important role in determining the nuclear hormone receptor and coactivator requirements for TR action.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.