Abstract
The majority of cholesterol reduction therapies, such as the statin drugs, work primarily by inducing the expression of hepatic low-density lipoprotein receptors (LDLRs), rendering these therapeutics only partially effective in animals lacking LDLRs. Although thyroid hormones and their synthetic derivatives, often referred to as thyromimetics, have been clearly shown to reduce serum cholesterol levels, this action has generally been attributed to their ability to increase expression of hepatic LDLRs. Here we show for the first time that the thyroid hormone T(3) and the thyroid hormone receptor-β selective agonists GC-1 and KB2115 are capable of markedly reducing serum cholesterol in mice devoid of functional LDLRs by inducing Cyp7a1 expression and stimulating the conversion and excretion of cholesterol as bile acids. Based on this LDLR-independent mechanism, thyromimetics such as GC-1 and KB2115 may represent promising cholesterol-lowering therapeutics for the treatment of diseases such as homozygous familial hypercholesterolemia, a rare genetic disorder caused by a complete lack of functional LDLRs, for which there are limited treatment options because most therapeutics are only minimally effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.