Abstract

Both a genetic or acquired neonatal thyroid hormone (TH) deficiency may result in a profound mental disability that is often accompanied by deafness. The existence of various TH-sensitive periods during inner ear development and general success of delayed, corrective TH treatment was investigated by treating pregnant and lactating rats with the goitrogen methimazole (MMI). We observed that for the establishment of normal hearing ability, maternal TH, before fetal thyroid gland function on estrus days 17-18, is obviously not required. Within a crucial time between the onset of fetal thyroid gland function and the onset of hearing at postnatal day 12 (P12), any postponement in the rise of TH-plasma levels, as can be brought about by treating lactating mothers with MMI, leads to permanent hearing defects of the adult offspring. The severity of hearing defects that were measured in 3- to 9-mo-old offspring could be increased with each additional day of TH deficiency during this critical period. Unexpectedly, the active cochlear process, assayed by distortion product otoacoustic emissions (DPOAE) measurements, and speed of auditory brain stem responses, which both until now were not thought to be controlled by TH, proved to be TH-dependent processes that were damaged by a delay of TH supply within this critical time. In contrast, no significant differences in the gross morphology and innervation of the organ of Corti or myelin gene expression in the auditory system, detected as myelin basic protein (MBP) and proteolipid protein (PLP) mRNA using Northern blot approach, were observed when TH supply was delayed for few days. These classical TH-dependent processes, however, were damaged when TH supply was delayed for several weeks. These surprising results may suggest the existence of different TH-dependent processes in the auditory system: those that respond to corrective TH supply (e.g., innervation and morphogenesis of the organ of Corti) and those that do not, but require T3 activity during a very tight time window (e.g. , active cochlear process, central processes).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.