Abstract

Thyroid hormones play a role in the initiation of ovarian maturation in fish. Thus, reports of delayed sexual maturation in female walleye ( Sander vitreus) exposed to contaminants in the Ottawa River suggest the presence of endocrine disrupting chemicals. The objectives of this study were to assess the effects of environmental contaminants in the Ottawa River on thyroid hormones of immature walleye and to develop a molecular biomarker of thyroid status. Walleye were sampled in the Ottawa River at Deep River (reference site), at Rivière Blanche (downstream from the Ottawa and Gatineau municipal wastewater treatment plants outflows), and at Plaisance (downstream from a pulp and paper mill). Plasma thyroid hormone levels were measured by radioimmunoassay. Walleye at Plaisance had two-fold elevated levels of thyroxine (T 4) and 1.5-fold elevated levels triiodothyronine (T 3), whereas the molar ratio of T 3:T 4 was reduced by over 50% compared to Deep River. Plasma T 3 levels were also elevated by approximately 1.5-fold at Rivière Blanche. Three iodothyronine deiodinases, a family of enzymes responsible for converting the prohormone T 4 to biologically active T 3, as well as for inactivating these two hormones, were partially cloned in walleye. A real-time PCR assay of deiodinase expression indicated that hepatic mRNA levels of type I and type III deiodinase were not modified between sites, whereas they were increased for type II deiodinase at Rivière Blanche as compared to the other sites. The response of this novel molecular transcript indicates a divergence with that expected based on the effects of experimentally induced hyperthyroidism on fish deiodinase expression; additional endpoints are therefore necessary to interpret changes in thyroid hormones levels in fish exposed to environmental contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.