Abstract

We have compared two effector functions, antibody formation and cytotoxic capacity in vitro, of mouse cells of various origin with special reference to the T lymphocyte dependence of these processes. We have used addition of PHA and coating of target chicken erythrocytes (CRBC) with antibody as the two means of inducing cytotoxicity. Antibody formation in vitro has been studied both against thymus-dependent sheep erythrocytes (SRBC) and thymus-independent ( E. coli) antigens. Spleen cells from thymectomized, lethally irradiated bone marrow-, or fetal liver-repopulated mice were deprived of phagocytic cells by uptake of colloidal iron. They did perform better than normal spleen cells in the antibody-induced cytotoxicity and were also induced to cytotoxicity by PHA. PHA did not induce increased DNA synthesis in these T cell-deprived spleen cell preparations, which could not make primary antibodies to SRBC but were able to do so against E. coli antigens. Fresh bone marrow and fetal liver cells, deprived of phagocytic cells, were also induced into a highly efficient cytotoxicity by anti-CRBC as well as by PHA. Pretreatment of spleen cells with an alloantiserum (θ) against T lymphocytes reduced but did not abolish the PHA-induced cytotoxicity. In contrast, it did not affect the antibody-induced cytotoxicity. Such treated cells could not make antibodies to SRBC but could do so against E. coli. Pretreatment of spleen cells with a heteroantiserum (MBLA) against mouse B lymphocytes completely abolished all cytotoxic- and antibody-forming abilities of the cells, although experiments with combinations of θ-treated and MBLA-treated cells suggested that the MBLA treatment had left behind a significant portion of helper T cells needed for the in vitro antibody response. From these data we conclude, as have others, that the antibody-induced cytotoxicity is independent of T lymphocytes. It can be induced in immature precursor cells from fetal liver or bone marrow, and these cells may also become cytotoxic on interaction with PHA. However, in normal spleen cells, at least part of the PHA-induced cytotoxicity is T cell dependent. Some preliminary data suggest that this PHA-induced cytotoxicity of normal spleen cells may be a joint process between T lymphocytes and other cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call