Abstract

The development of effective T-cell-based immunotherapies to treat infection, cancer, and autoimmunity should incorporate the ground rules that control differentiation of T cells in the thymus. Within the thymus, thymic epithelial cells (TECs) provide microenvironments supportive of the generation and selection of T cells that are responsive to pathogen-derived antigens, and yet tolerant to self-determinants. Defects in TEC differentiation cause syndromes that range from immunodeficiency to autoimmunity, which makes the study of TECs of fundamental and clinical importance to comprehend how immunity and tolerance are balanced. Critical to tolerance induction are medullary thymic epithelial cells (mTECs), which purge autoreactive T cells, or redirect them to a regulatory T-cell lineage. In this issue of the European Journal of Immunology, studies by Baik et al. and Mayer et al. [Eur. J. Immunol. 2016. 46: XXXX-XXXX and 46: XXXX-XXXX]) document novel spatial-temporal singularities in the lineage specification and maintenance of mTECs. While Baik et al. define a developmental checkpoint during mTEC specification in the embryo, Mayer et al. reveal that the generation and maintenance of the adult mTEC compartment is temporally controlled in vivo. The two reports described new developmentally related, but temporally distinct principles that underlie the homeostasis of the thymic medulla across life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.