Abstract

BackgroundThe pathogenesis of asthma, which is an allergic lung disease, is associated with a variety of allergens such as house dust mite, pollen, and mould, IgE containing serum IgE and allergen-specific-IgE, and inflammatory cytokines including thymus and activation-regulated chemokine (TARC)/CCL17. Because aging is an essential factor in the pathogenesis of asthma, we examined biomarkers related to asthmatic subjects depending on age.ResultsPhysiological indices such as FEV1(forced expiratory capacity in 1 s), FEV1 (% predicted), and FEV1/FVC(forced vital capacity) (%) in asthmatic subjects were lower than those in normal subjects. Total IgE, Der p1 specific IgE, and Der f1 specific IgE were elevated in serum of asthmatics relative to normal individuals. Regulated on activation, normal T cell expressed and secreted (RANTES)/CCL5 in serum and interleukin 6 (IL-6), interleukin 8 (IL-8), monocyte chemoattractant protein (MCP)-1/CCL2, RANTES, and macrophage inflammatory protein (MIP)-1α/CCL3 in bronchoalveolar lavage fluid (BALF) of asthmatic subjects were higher than in normal individuals. Upon classification of experimental groups depending on age, physiological indices and Der p1-specific IgE (class) were decreased in middle aged adult and elderly adult groups relative to the young adult group. TARC levels in serum were strongly elevated in the elderly adult group relative to the young adult and the middle aged adult groups. TARC in serum was related to total IgE in serum in the elderly adult group.ConclusionsTaken together, although TARC in serum and BALF is not different between normal and asthmatic individuals, TARC increases in serum of elderly asthmatic subjects. The level of TARC has a positive effect on the level of IgE in the elderly adult group. These findings may help us better understand the relationship of pathogenesis of allergic diseases and aging.

Highlights

  • The pathogenesis of asthma, which is an allergic lung disease, is associated with a variety of allergens such as house dust mite, pollen, and mould, IgE containing serum IgE and allergen-specific-IgE, and inflammatory cytokines including thymus and activation-regulated chemokine (TARC)/CCL17

  • Characteristics of the study population Physiology indices such as Forced expiratory capacity in 1 s (FEV1), FEV1 (% predicted) and FEV1/Forced vital capacity (FVC) in asthmatic subjects were decreased relative to normal subjects

  • Eosinophils in blood and bronchoalveolar lavage fluid (BALF) were increased in asthmatic subjects relative to normal subjects

Read more

Summary

Introduction

The pathogenesis of asthma, which is an allergic lung disease, is associated with a variety of allergens such as house dust mite, pollen, and mould, IgE containing serum IgE and allergen-specific-IgE, and inflammatory cytokines including thymus and activation-regulated chemokine (TARC)/CCL17. Asthma is an allergic disease in the respiratory tract that is characterized by lung inflammation and mucus secretion resulting in airway obstruction, as well as allergenspecific IgE [1, 2]. Cytokine secretion, which is one of the most important allergic inflammatory responses, is increased by HDM via Toll-like receptor (TLR) and proteinase-activated receptor (PAR) [5, 6]. Cytokines including interleukin 4 (IL-4), interleukin 5 (IL-5), IL-6, IL-8, interleukin 10 (IL-10), monocyte chemoattractant protein (MCP)-1/CCL2, and thymus and activation-regulated chemokine (TARC)/

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call