Abstract

Prolonged myocardial ischemia results in cardiomyocyte loss despite successful revascularization. We have reported that retrograde application of embryonic endothelial progenitor cells (eEPCs) provides rapid paracrine protection against ischemia-reperfusion injury. Here, we investigated the role of thymosin beta4 (Tbeta4) as a mediator of eEPC-mediated cardioprotection. In vitro, neonatal rat cardiomyocytes were subjected to hypoxia-reoxygenation in the absence or presence of eEPCs with or without Tbeta4 short hairpin RNA (shRNA) transfection. In vivo, pigs (n=9 per group) underwent percutaneous left anterior descending artery occlusion for 60 minutes on day 1. After 55 minutes of ischemia, control eEPCs (5x10(6) cells) or cells transfected with Tbeta4 shRNA when indicated or 15 mg Tbeta4 alone were retroinfused into the anterior interventricular vein. Segmental endocardial shortening in the infarct zone at 150-bpm atrial pacing, infarct size (triphenyl tetrazolium chloride viability and methylene blue exclusion), and inflammatory cell influx (myeloperoxidase activity) were determined 24 hours later. Survival of neonatal rat cardiomyocytes increased from 32+/-4% to 90+/-2% after eEPC application, an effect sensitive to shRNA transfection compared with Tbeta4 (45+/-7%). In vivo, infarct size decreased with eEPC application (38+/-4% versus 54+/-4% of area at risk; P<0.01), an effect abolished by Tbeta4 shRNA (62+/-3%). Segmental subendocardial shortening improved after eEPC treatment (22+/-3% versus -3+/-4% of control area) unless Tbeta4 shRNA was transfected (-6+/-4%). Retroinfusion of Tbeta4 mimicked eEPC application (infarct size, 37+/-3%; segmental endocardial shortening, 34+/-7%). Myeloperoxidase activity (3323+/-388 U/mg in controls) was decreased by eEPCs (1996+/-546 U/mg) or Tbeta4 alone (1455+/-197 U/mg) but not Tbeta4 shRNA-treated eEPCs (5449+/-829 U/mg). Our findings show that short-term cardioprotection derived by regional application of eEPCs can be attributed, at least in part, to Tbeta4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.