Abstract
BackgroundPhytochemical agents such as thymoquinone (TQ) have osteogenic property. This study aimed to investigate the synergic impact of TQ and hydroxyapatite on mesenchymal stem cell differentiation. Alginate was also used as drug vehicle.MethodsHA scaffolds were fabricated by casting into polyurethane foam and sintering at 800 °C, and then, 1250 °C and impregnated by TQ containing alginate. The adipose-derived stem cells were aliquoted into 4 groups: control, osteogenic induced-, TQ and osteogenic induced- and TQ-treated cultures. Adipose derived-mesenchymal stem cells were mixed with alginate and loaded into the scaffoldsResultsThe results showed that impregnation of HA scaffold with alginate decelerated the degradation rate and reinforced the mechanical strength. TQ loading in alginate/HA had no significant influence on physical and mechanical properties. Real-time RT-PCR showed significant elevation in collagen, osteopontin, and osteocalcin expression at early phase of differentiation. TQ also led to an increase in alkaline phosphatase activity. At long term, TQ administration had no impact on calcium deposition and proliferation rate as well as bone-marker expression.ConclusionTQ accelerates the differentiation of the stem cells into the osteoblasts, without changing the physical and mechanical properties of the scaffolds. TQ also showed a synergic influence on differentiation potential of mesenchymal stem cells.
Highlights
Phytochemical agents such as thymoquinone (TQ) have osteogenic property
Our study confirmed that loading TQ on HA/alginate scaffolds effectively accelerated osteoblast differentiation of Mesenchymal stem cell (MSC), and this can be applicable in bone tissue engineering
We showed that the expression of bone-specific markers, such as osteopontin, osteocalcin, and collagen type I, accelerated as early as day 7 compared to the control cultures
Summary
Phytochemical agents such as thymoquinone (TQ) have osteogenic property. This study aimed to investigate the synergic impact of TQ and hydroxyapatite on mesenchymal stem cell differentiation. One of the most important concerns in regenerative medicine is regeneration of bone fracture due to trauma or degenerative diseases [1]. The gold standard for repairing bone defects is autografts and allografts, their complications limit these therapeutic approaches. An alternative technologies is construction of engineered bones [2, 3] that can be considered as a tool for delivering the cells to the injury site. Engineered bones mimic the normal bone tissue structure and functions [4]. The triad of engineered tissues is living cells, scaffold and growth factors [5].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.