Abstract

The treatments available for non-small cell lung cancer exert various side effects in patients, and the burden of treatment cost is high. Therefore, exploring the alternative system of medicines, including therapies based on natural compounds, has become inevitable in developing anticancer therapeutics. This study used an integrated approach involving in-silico and in-vitro methods to explore natural compounds targeting Bax and Bcl2 for their apoptotic potential. Molecular docking followed by molecular dynamics (MD) simulation of thymoquinone (Tq) and quercetin (Qu) with Bax and Bcl2 were carried out to explore their interactions and stability under explicit solvent conditions. Tq and Qu showed appreciable binding affinities toward Bax (-6.2 and -7.1 kcal/mol, respectively) and Bcl2 (-5.6 and -6.4 kcal/mol, respectively) with well-organized conformational fitting compatibility. The MD simulation results revealed the development of stable complexes maintained by various noncovalent interactions that were preserved throughout the 100 ns trajectories. Further studies with these compounds were carried out using various in-vitro experimental approaches like MTT assay, apoptotic assay, and Western blot. IC50 values of Tq and Qu alone in A549 cells were found to be 45.78and 35.69 µM, while in combination, it comes down to 22.49 µM, which is quite impressive. Similarly, in apoptosis assay, a combination of Tq and Qu shows 50.9% early apoptosis compared to Tq (40.6%) and Qu (33.3%) when taken alone. These assays signify their apoptotic induction potential, whereas both compounds significantly reduce the expression of antiapoptotic protein Bcl2 and induce proapoptotic Bax, suggestive of sensitizing NSCLS cells towardapoptosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.