Abstract
From the past few decades, remarkable awareness has laid on the use of herbal medicines in pharmaceutical research. Thymoquinone (TQ), the main chemical constituent of Nigella Sativa (NS) plant, has been extensively explored, and revealed an array of therapeutic benefits, in different in vitro, and in vivo conditions. This review provides brief outline of the diverse therapeutics actions of TQ, and NS, viz. anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, gastroprotective, hepato-protective, anti-microbial and anti-histaminic. Besides, a special emphasis has given on the use of colloidal drug delivery systems exploited hitherto, for the effective delivery of TQ and NS. The main objective of the review was to include an intensive patent literature, available on TQ and NS, for its usefulness in different therapeutic conditions. We embarked an organized search of bibliographic databases for peer-reviewed research literature and patent databases. The characteristics of screened papers were described, and a rational qualitative content analysis approach was applied to analyze the interventions and findings of included studies using a theoretical framework. In the past, various studies have carried out which undoubtedly vouch for the multifarious therapeutic roles of TQ in an array of different diseases. More than 670 research papers and around 50 review articles are available on TQ and NS in PubMed database until now, suggesting its high significance. Around 12 review articles published only on the anticancer potential, while the others on its anti- inflammatory and anti-oxidant potential. Around 120 papers included in the review revealed the therapeutic benefits of TQ. In addition to this, an intensive patent literature is also available on TQ and NS, for its usefulness in different therapeutic conditions. The findings of this review confirm the effectiveness of TQ in various pathologies viz. inflammation, cancer, diabetes, gastric, hepatic, microbial and allergies. However, the complete clinical benefit of TQ has not yet been realized, owing to its poor biopharmaceutical properties. Nevertheless, colloidal drug delivery carrier systems, could be impending in bringing forth this potential molecule to reality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.