Abstract

BackgroundThe long-term prognosis of Crohn’s disease (CD) remains unsatisfactory. Therefore, we assessed the therapeutic effect of thymopentin (TP5) in a mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, which mimics CD, and analyzed its impact on neutrophil extracellular traps (NETs). MethodsNET markers, including myeloperoxidase (MPO), neutrophil elastase (NE), citrullinated histone H3 (CitH3), peptidyl arginine deiminase IV (PAD4), and double-stranded DNA (dsDNA) were assessed by immunostaining and enzyme-linked immunosorbent assay. NET formation was evaluated in vitro. Neoseptin 3, a specific NET agonist, was used to reverse the effect of TP5 on TNBS-induced colitis. The action mechanism of TP5 was investigated using RNA-seq. ResultsTP5 ameliorated weight loss (P < 0.001), disease activity index (DAI) (P = 0.05), colon shrinkage (P = 0.04), and elevated levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, and neutrophils in the TNBS group. The TNBS group exhibited increased MPO, NE, CitH3, PAD4, dsDNA and MPO-DNA levels (all P < 0.001), which decreased after TP5 administration (P = 0.01, P < 0.001, P < 0.001, P < 0.001, P = 0.02, and P = 0.02 respectively). Tissue CitH3 levels were positively correlated with DAI and TNF-α levels (P < 0.05). Furthermore, phorbol 12-myristate 13-acetate-stimulated NET formation increased by 1.8-, 2.8-, and 2.3-fold in vitro in the control, TNBS + saline, and TNBS + TP5 groups, respectively. Neoseptin 3 significantly reversed the effect of TP5. RNA-seq revealed potential pathways underlying the effect of TP5. ConclusionTP5 effectively ameliorated colitis by suppressing NETs in the experimental CD model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call