Abstract

Dormant spores of a Bacillus subtilis mutant that lacks two major small, acid-soluble spore proteins are very sensitive to UV irradiation, which in spores generates about half the amount of thymine-containing dimers formed by comparable irradiation of vegetative cells. Irradiation of mutant spores also produces spore photoproducts, but again only about one-half the amount formed in comparably irradiated wild-type spores. These findings suggest that the high UV sensitivity of the mutant spores is due to the production of pyrimidine dimers, which are not found in UV-irradiated wild-type spores, and that the high level of small, acid-soluble proteins found in wild-type spores is directly involved in spore UV resistance by facilitating a conformational change in spore DNA, preventing pyrimidine dimer formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.