Abstract

As a novel crystal engineering approach to organic molecule-based magnets, we have proposed a strategy of bio-inspired molecular assemblage based on intermolecular hydrogen bonding. Complementary hydrogen bonding between nucleobases as found in DNA is a promising non-covalent interaction for controlling the molecular arrangement of open-shell building block molecules. The hydrogen bonding of complementary nucleobases substituted with radical entities of different spin quantum numbers S, e.g., S = 1 and S = 1/2, gives rise to a heteromolecular aggregation of the S = 1 and S = 1/2 entities, leading to organic ferrimagnetics. In this study, we have designed and synthesized a thymine-substituted nitronyl nitroxide biradical ( 1) as a triplet ( S = 1) component for the bio-inspired ferrimagnetic system. The molecular ground state of 1 has been found to be triplet ( S = 1) with a singlet–triplet energy gap of 2 J/ k B = 21.4 K from magnetic susceptibility measurements. It has been found from X-ray structure analyses that the molecules form hydrogen-bonded aggregates in the crystalline solid state, in which the thymine moiety plays a primary role in the molecular packing. The ground-state triplet biradical serves as an S = 1 building block for bio-inspired molecule-based magnets with hydrogen-bonded nucleobase pairings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.