Abstract
Thymic stromal lymphopoietin (TSLP) is highly expressed by bronchial epithelial cells and skin keratinocytes in allergic diseases. TSLP acts as a master switch for allergic inflammation through the activation of dendritic cells and mast cells for initiating inflammatory type 2 T-helper lymphocyte responses. To elucidate the immunological cascades of epithelium/keratinocyte-eosinophil-mediated allergic inflammation, we examined the modulating effects of TSLP on human eosinophils. Expression of TSLP receptor complex was detected by RT-PCR, flow cytometry, and Western blot. Adhesion molecules, cytokine, and chemokines were quantitated by flow cytometry or ELISA. Intracellular signal transduction molecules were measured by Western blot and flow cytometry. We observed that human eosinophils constitutively expressed functional heterodimeric TSLP receptor complex comprising TSLP-binding chain TSLPR and IL-7Ralpha chain. TSLP could significantly delay eosinophil apoptosis, up-regulate cell surface expression of adhesion molecule CD18 and intercellular adhesion molecule-1, but down-regulate L-selectin, enhance eosinophil adhesion onto fibronectin, and induce the release of inflammatory cytokine IL-6 and chemokines CXCL8, CXCL1, and CCL2 (all P < 0.05). All these effects were concentration dependent and TSLP specific. TSLP regulated the above effects through the activation of extracellular signal-regulated protein kinase, p38 mitogen-activated protein kinase, and NF-kappaB signaling pathway, but not signal transducer and activator of transcription 5 and 3, which were usually activated in other effector cells upon TSLP stimulation. Collectively, the above findings elucidate the proallergic mechanisms of TSLP via the activation of distinct intracellular signaling pathways in eosinophils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Respiratory Cell and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.