Abstract

Background Insulin and multiple other autoantigens have been implicated in the pathogenesis of autoimmune type 1 diabetes, but the origin of immunological self-reactivity specifically oriented against insulin-secreting islet β-cells remains obscure. The primary objective of the present study was to investigate the hypothesis that a defect in thymic central T-cell self-tolerance of the insulin hormone family could contribute to the pathophysiology of type 1 diabetes. This hypothesis was investigated in a classic animal model of type 1 diabetes, the Bio-Breeding (BB) rat. Methods The expression of the mammalian insulin-related genes (Ins, Igf1 and Igf2) was analysed in the thymus of inbred Wistar Furth rats (WF), diabetes-resistant BB (BBDR) and diabetes-prone BB (BBDP) rats. Results RT-PCR analyses of total RNA from WF, BBDP and BBDR thymi revealed that Igf1 and Ins mRNAs are present in 15/15 thymi from 2-day-old, 5-day-old and 5-week-old WF, BBDR and BBDP rats. In contrast, a complete absence of Igf2 mRNA was observed in more than 80% of BBDP thymi. The absence of detectable Igf2 transcripts in the thymus of BBDP rats is tissue-specific, since Igf2 mRNAs were detected in all BBDP brains and livers examined. Using a specific immunoradiometric assay, the concentration of thymic IGF-2 protein was significantly lower in BBDP than in BBDR rats (p<0.01). Conclusions The present study suggests an association between the emergence of autoimmune diabetes and a defect in Igf2 expression in the thymus of BBDP rats. This tissue-specific defect in gene expression could contribute both to the lymphopenia of these rats (by impaired T-cell development) and the absence of central T-cell self-tolerance of the insulin hormone family (by defective negative selection of self-reactive T-cells). Copyright © 2001 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.