Abstract

Stromal ribosomes and those bound to thylakoid membranes were prepared from intact spinach chloroplasts which were purified on Percoll gradients. The products of read-out translation of these ribosomes supplemented with an Escherichia coli extract were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Striking similarity was found between the polypeptides labeled in the read-out translation of the chloroplastic ribosomes and those synthesized in isolated chloroplasts. Among the polypeptides translated on thylakoid-bound ribosomes, apoprotein of chlorophyll-protein complex I, α and β subunits of coupling factor 1, and 32,000-Da membrane polypeptide were identified from their mobility on the polyacrylamide gel. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and other several stromal proteins were translated exclusively from stromal ribosomes. However, when the translation was programmed in cell-free systems from either E. coli, wheat germ, or rabbit reticulocytes by RNAs isolated separately from stroma and thylakoids, no qualitative difference was found between the products from those RNAs. These results suggest that thylakoid-bound ribosomes are the main sites of synthesis of thylakoid proteins and stromal-free ribosomes are that of stromal proteins, and that thylakoids and stroma contain mRNAs for the stromal and the thylakoid proteins, respectively, in a form not functioning in the chloroplasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call