Abstract

Four issues are discussed concerning Thurstone's discriminal processes: the distributions governing the representation, the nature of the response decision rules, the relation of the mean representation to physical characteristics of the stimulus, and factors affecting the variance of the representation. A neural schema underlying the representation is proposed which involves samples in time of pulse trains on individual neural fibers, estimators of parameters of the several pulse trains, samples of neural fibers, and an aggregation of the estimates over the sample. The resulting aggregated estimate is the Thurstonian representation. Two estimators of pulse rate, which is monotonic with signal intensity, are timing and counting ratios and two methods of aggregation are averaging and maximizing. These lead to very different predictions in a speed-accuracy experiment; data indicate that both estimators are available and the aggregation is by averaging. Magnitude estimation data are then used both to illustrate an unusual response rule and to study the psychophysical law. In addition, the pattern of variability and correlation of magnitude estimates on successive trials is interpreted in terms of the sample size over which the aggregation takes place. Neural sample size is equated with selective attention, and is an important factor affecting the variability of the representation. It accounts for the magical number seven phenomenon in absolute identification and predicts the impact of nonuniform distributions of intensities on the absolute identification of two frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call